eXTReMe Tracker

Dengue Literature - Latest PubMed Articles

Overview of latest articles and publications on ebola in PubMed. PubMed is a service of the US National Library of Medicine that includes over 18 million citations from MEDLINE and other life science journals.


  • Modelling original antigenic sin in dengue viral infection.
    Modelling original antigenic sin in dengue viral infection. [Journal Article]Math Med Biol 2017 Feb 27.MMNikin-Beers R, Ciupe SM Cross-reactive T cell responses induced by a primary dengue virus infection may contribute to increased disease severity following heterologous infections with a different virus serotype in a phenomeno...Publisher Full TextCross-reactive T cell responses induced by a primary dengue virus infection may contribute to increased disease severity following heterologous infections with a different virus serotype in a phenomenon known as the original antigenic sin. In this study, we developed and analyzed in-host models of T cell responses to primary and secondary dengue virus infections that considered the effect of T cell cross-reactivity in disease enhancement. We fitted the models to published patient data and showed that the overall infected cell killing is similar in dengue heterologous infections, resulting in dengue fever and dengue hemorrhagic fever. The contribution to overall killing, however, is dominated by non-specific T cell responses during the majority of secondary dengue hemorrhagic fever cases. By contrast, more than half of secondary dengue fever cases have predominant strain-specific T cell responses with high avidity. These results support the hypothesis that cross-reactive T cell responses occur mainly during severe disease cases of heterologous dengue virus infections.

  • Human Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) regulates cytoplasmic lipid droplet abundance: A potential target for indirect-acting anti-dengue virus agents.
    Human Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) regulates cytoplasmic lipid droplet abundance: A potential target for indirect-acting anti-dengue virus agents. [Journal Article]PLoS One 2017; 12(3):e0174483.PlosHyrina A, Meng F, McArthur SJ, et al. Viral hijacking and manipulation of host-cell biosynthetic pathways by human enveloped viruses are shared molecular events essential for the viral lifecycle. For Flaviviridae members such as hepatitis ...Publisher Full TextViral hijacking and manipulation of host-cell biosynthetic pathways by human enveloped viruses are shared molecular events essential for the viral lifecycle. For Flaviviridae members such as hepatitis C virus and dengue virus (DENV), one of the key subsets of cellular pathways that undergo manipulation is the lipid metabolic pathways, underlining the importance of cellular lipids and, in particular, lipid droplets (LDs) in viral infection. Here, we hypothesize that targeting cellular enzymes that act as key regulators of lipid homeostasis and LD formation could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with all DENV serotypes (1-4) circulating around the world. Using PF-429242, an active-site-directed inhibitor of SKI-1/S1P, we demonstrate that inhibition of SKI-1/S1P enzymatic activity in human hepatoma Huh-7.5.1 cells results in a robust reduction of the LD numbers and LD-positive areas and provides a means of effectively inhibiting infection by DENV (1-4). Pre-treatment of Huh-7.5.1 cells with PF-429242 results in a dose-dependent inhibition of DENV infection [median inhibitory dose (EC50) = 1.2 microM; median cytotoxic dose (CC50) = 81 microM; selectivity index (SI) = 68)] and a ~3-log decrease in DENV-2 titer with 20 microM of PF-429242. Post-treatment of DENV-2 infected Huh-7.5.1 cells with PF-429242 does not affect viral RNA abundance, but it does compromise the assembly and/or release of infectious virus particles. PF-429242 antiviral activity is reversed by exogenous oleic acid, which acts as an inducer of LD formation in PF-429242-treated and non-treated control cells. Collectively, our results demonstrate that human SKI-1/S1P is a potential target for indirect-acting pan-serotypic anti-DENV agents and reveal new therapeutic opportunities associated with the use of lipid-modulating drugs for controlling DENV infection.

  • Vector status of Aedes species determines geographical risk of autochthonous Zika virus establishment.
    Vector status of Aedes species determines geographical risk of autochthonous Zika virus establishment. [Journal Article]PLoS Negl Trop Dis 2017 Mar 24; 11(3):e0005487.PNGardner L, Chen N, Sarkar S Results from the analysis reveal that if Ae. aegypti is the only competent Zika vector, then risk is geographically limited; in North America mainly to Florida and Texas. However, if Ae. albopictus pro...Publisher Full TextThe 2015-16 Zika virus pandemic originating in Latin America led to predictions of a catastrophic global spread of the disease. Since the current outbreak began in Brazil in May 2015 local transmission of Zika has been reported in over 60 countries and territories, with over 750 thousand confirmed and suspected cases. As a result of its range expansion attention has focused on possible modes of transmission, of which the arthropod vector-based disease spread cycle involving Aedes species is believed to be the most important. Additional causes of concern are the emerging new links between Zika disease and Guillain-Barre Syndrome (GBS), and a once rare congenital disease, microcephaly.Like dengue and chikungunya, the geographic establishment of Zika is thought to be limited by the occurrence of its principal vector mosquito species, Ae. aegypti and, possibly, Ae. albopictus. While Ae. albopictus populations are more widely established than those of Ae. aegypti, the relative competence of these species as a Zika vector is unknown. The analysis reported here presents a global risk model that considers the role of each vector species independently, and quantifies the potential spreading risk of Zika into new regions. Six scenarios are evaluated which vary in the weight assigned to Ae. albopictus as a possible spreading vector. The scenarios are bounded by the extreme assumptions that spread is driven by air travel and Ae. aegypti presence alone and spread driven equally by both species. For each scenario destination cities at highest risk of Zika outbreaks are prioritized, as are source cities in affected regions. Finally, intercontinental air travel routes that pose the highest risk for Zika spread are also ranked. The results are compared between scenarios.Results from the analysis reveal that if Ae. aegypti is the only competent Zika vector, then risk is geographically limited; in North America mainly to Florida and Texas. However, if Ae. albopictus proves to be a competent vector of Zika, which does not yet appear to be the case, then there is risk of local establishment in all American regions including Canada and Chile, much of Western Europe, Australia, New Zealand, as well as South and East Asia, with a substantial increase in risk to Asia due to the more recent local establishment of Zika in Singapore.

  • Rapid Surveillance for Vector Presence (RSVP): Development of a novel system for detecting Aedes aegypti and Aedes albopictus.
    Rapid Surveillance for Vector Presence (RSVP): Development of a novel system for detecting Aedes aegypti and Aedes albopictus. [Journal Article]PLoS Negl Trop Dis 2017 Mar 24; 11(3):e0005505.PNMontgomery BL, Shivas MA, Hall-Mendelin S, et al. RSVP can rapidly detect nucleic acids from low numbers of target species within large samples of endemic species aggregated from multiple ovitraps. This screening capability facilitates deployment of o...Publisher Full TextThe globally important Zika, dengue and chikungunya viruses are primarily transmitted by the invasive mosquitoes, Aedes aegypti and Aedes albopictus. In Australia, there is an increasing risk that these species may invade highly urbanized regions and trigger outbreaks. We describe the development of a Rapid Surveillance for Vector Presence (RSVP) system to expedite presence- absence surveys for both species.We developed a methodology that uses molecular assays to efficiently screen pooled ovitrap (egg trap) samples for traces of target species ribosomal RNA. Firstly, specific real-time reverse transcription-polymerase chain reaction (RT-PCR) assays were developed which detect a single Ae. aegypti or Ae. albopictus first instar larva in samples containing 4,999 and 999 non-target mosquitoes, respectively. ImageJ software was evaluated as an automated egg counting tool using ovitrap collections obtained from Brisbane, Australia. Qualitative assessment of ovistrips was required prior to automation because ImageJ did not differentiate between Aedes eggs and other objects or contaminants on 44.5% of ovistrips assessed, thus compromising the accuracy of egg counts. As a proof of concept, the RSVP was evaluated in Brisbane, Rockhampton and Goomeri, locations where Ae. aegypti is considered absent, present, and at the margin of its range, respectively. In Brisbane, Ae. aegypti was not detected in 25 pools formed from 477 ovitraps, comprising ≈ 54,300 eggs. In Rockhampton, Ae. aegypti was detected in 4/6 pools derived from 45 ovitraps, comprising ≈ 1,700 eggs. In Goomeri, Ae. aegypti was detected in 5/8 pools derived from 62 ovitraps, comprising ≈ 4,200 eggs.RSVP can rapidly detect nucleic acids from low numbers of target species within large samples of endemic species aggregated from multiple ovitraps. This screening capability facilitates deployment of ovitrap configurations of varying spatial scales, from a single residential block to entire suburbs or towns. RSVP is a powerful tool for surveillance of invasive Aedes spp., validation of species eradication and quality assurance for vector control operations implemented during disease outbreaks.

  • Schisandrin A inhibits dengue viral replication via upregulating antiviral interferon responses through STAT signaling pathway.
    Schisandrin A inhibits dengue viral replication via upregulating antiviral interferon responses through STAT signaling pathway. [Journal Article]Sci Rep 2017 Mar 24.:45171.SRYu JS, Wu YH, Tseng CK, et al. Dengue virus (DENV) infects 400 million people worldwide annually. Infection of more than one serotype of DENV highly corresponds to dengue hemorrhagic fever and dengue shock syndrome, which are the le...Publisher Full TextDengue virus (DENV) infects 400 million people worldwide annually. Infection of more than one serotype of DENV highly corresponds to dengue hemorrhagic fever and dengue shock syndrome, which are the leading causes of high mortality. Due to lack of effective vaccines and unavailable therapies against DENV, discovery of anti-DENV agents is urgently needed. We first characterize that Schisandrin A can inhibit the replication of four serotypes of DENV in a concentration- and time-dependent manner, with an effective half-maximal effective concentration 50% (EC50) value of 28.1 ± 0.42 μM against DENV serotype type 2 without significant cytotoxicity. Furthermore, schisandrin A can effectively protect mice from DENV infection by reducing disease symptoms and mortality of DENV-infected mice. We demonstrate that STAT1/2-mediated antiviral interferon responses contribute to the action of schisandrin A against DENV replication. Schisandrin A represents a potential antiviral agent to block DENV replication in vitro and in vivo. In conclusion, stimulation of STAT1/2-mediated antiviral interferon responses is a promising strategy to develop antiviral drug.

  • Structure-Activity Relationship Study of QL47: A Broad-Spectrum Antiviral Agent.
    Structure-Activity Relationship Study of QL47: A Broad-Spectrum Antiviral Agent. [Journal Article]ACS Med Chem Lett 2017 Mar 09; 8(3):344-349.AMLiang Y, de Wispelaere M, Carocci M, et al. Here we report the structure-activity relationship (SAR) investigations of QL-XII-47 (QL47), a compound that possesses broad-spectrum antiviral activity against dengue virus and other RNA viruses. A me...Here we report the structure-activity relationship (SAR) investigations of QL-XII-47 (QL47), a compound that possesses broad-spectrum antiviral activity against dengue virus and other RNA viruses. A medicinal chemistry campaign initiated from QL47, a previously reported covalent BTK inhibitor, to derive YKL-04-085, which is devoid of any kinase activity when screened against a panel of 468 kinases and with improved pharmacokinetic properties. Both QL47 and YKL-04-085 are potent inhibitors of viral translation and exhibit cellular antiviral activity at 35-fold lower concentrations relative to inhibition of host-cell proliferation.

  • Dengue diversity across spatial and temporal scales: Local structure and the effect of host population size.
    Dengue diversity across spatial and temporal scales: Local structure and the effect of host population size. [Journal Article]Science 2017 Mar 24; 355(6331):1302-1306.SciSalje H, Lessler J, Maljkovic Berry I, et al. A fundamental mystery for dengue and other infectious pathogens is how observed patterns of cases relate to actual chains of individual transmission events. These pathways are intimately tied to the me...Publisher Full TextA fundamental mystery for dengue and other infectious pathogens is how observed patterns of cases relate to actual chains of individual transmission events. These pathways are intimately tied to the mechanisms by which strains interact and compete across spatial scales. Phylogeographic methods have been used to characterize pathogen dispersal at global and regional scales but have yielded few insights into the local spatiotemporal structure of endemic transmission. Using geolocated genotype (800 cases) and serotype (17,291 cases) data, we show that in Bangkok, Thailand, 60% of dengue cases living <200 meters apart come from the same transmission chain, as opposed to 3% of cases separated by 1 to 5 kilometers. At distances <200 meters from a case (encompassing an average of 1300 people in Bangkok), the effective number of chains is 1.7. This number rises by a factor of 7 for each 10-fold increase in the population of the "enclosed" region. This trend is observed regardless of whether population density or area increases, though increases in density over 7000 people per square kilometer do not lead to additional chains. Within Thailand these chains quickly mix, and by the next dengue season viral lineages are no longer highly spatially structured within the country. In contrast, viral flow to neighboring countries is limited. These findings are consistent with local, density-dependent transmission and implicate densely populated communities as key sources of viral diversity, with home location the focal point of transmission. These findings have important implications for targeted vector control and active surveillance.

  • Estimating transmission chains for dengue.
    Estimating transmission chains for dengue. [Editorial]Science 2017 Mar 24; 355(6331):1277-1278.SciAsh C Publisher Full Text

  • Non-Canonical Roles of Dengue Virus Non-Structural Proteins.
    Non-Canonical Roles of Dengue Virus Non-Structural Proteins. [Journal Article, Review]Viruses 2017 Mar 13; 9(3)VZeidler JD, Fernandes-Siqueira LO, Barbosa GM, et al. The Flaviviridae family comprises a number of human pathogens, which, although sharing structural and functional features, cause diseases with very different outcomes. This can be explained by the plur...Publisher Full TextThe Flaviviridae family comprises a number of human pathogens, which, although sharing structural and functional features, cause diseases with very different outcomes. This can be explained by the plurality of functions exerted by the few proteins coded by viral genomes, with some of these functions shared among members of a same family, but others being unique for each virus species. These non-canonical functions probably have evolved independently and may serve as the base to the development of specific therapies for each of those diseases. Here it is discussed what is currently known about the non-canonical roles of dengue virus (DENV) non-structural proteins (NSPs), which may account for some of the effects specifically observed in DENV infection, but not in other members of the Flaviviridae family. This review explores how DENV NSPs contributes to the physiopathology of dengue, evasion from host immunity, metabolic changes, and redistribution of cellular components during infection.

  • The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection.
    The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. [Journal Article]PLoS Negl Trop Dis 2017 Mar; 11(3):e0005429.PNCromwell EA, Stoddard ST, Barker CM, et al. Routine entomological monitoring data are used to quantify the abundance of Ae. aegypti. The public health utility of these indicators is based on the assumption that greater mosquito abundance increas...Publisher Full TextRoutine entomological monitoring data are used to quantify the abundance of Ae. aegypti. The public health utility of these indicators is based on the assumption that greater mosquito abundance increases the risk of human DENV transmission, and therefore reducing exposure to the vector decreases incidence of infection. Entomological survey data from two longitudinal cohort studies in Iquitos, Peru, linked with 8,153 paired serological samples taken approximately six months apart were analyzed. Indicators of Ae. aegypti density were calculated from cross-sectional and longitudinal entomological data collected over a 12-month period for larval, pupal and adult Ae. aegypti. Log binomial models were used to estimate risk ratios (RR) to measure the association between Ae. aegypti abundance and the six-month risk of DENV seroconversion. RRs estimated using cross-sectional entomological data were compared to RRs estimated using longitudinal data. Higher cross-sectional Ae. aegypti densities were not associated with an increased risk of DENV seroconversion. Use of longitudinal entomological data resulted in RRs ranging from 1.01 (95% CI: 1.01, 1.02) to 1.30 (95% CI: 1.17, 1.46) for adult stage density estimates and RRs ranging from 1.21 (95% CI: 1.07, 1.37) to 1.75 (95% CI: 1.23, 2.5) for categorical immature indices. Ae. aegypti densities calculated from longitudinal entomological data were associated with DENV seroconversion, whereas those measured cross-sectionally were not. Ae. aegypti indicators calculated from cross-sectional surveillance, as is common practice, have limited public health utility in detecting areas or populations at high risk of DENV infection.